Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1810045

ABSTRACT

Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.


Subject(s)
COVID-19 , Cancer Vaccines , Animals , COVID-19/therapy , Ferritins/chemistry , Immunotherapy , Iron/metabolism , SARS-CoV-2
2.
J Int Med Res ; 49(12): 3000605211062783, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1571589

ABSTRACT

OBJECTIVE: Secondary infection, especially bloodstream infection, is an important cause of death in critically ill patients with COVID-19. We aimed to describe secondary bloodstream infection (SBI) in critically ill adults with COVID-19 in the intensive care unit (ICU) and to explore risk factors related to SBI. METHODS: We reviewed all SBI cases among critically ill patients with COVID-19 from 12 February 2020 to 24 March 2020 in the COVID-19 ICU of Jingmen First People's Hospital. We compared risk factors associated with bloodstream infection in this study. All SBIs were confirmed by blood culture. RESULTS: We identified five cases of SBI among the 32 patients: three with Enterococcus faecium, one mixed septicemia (E. faecium and Candida albicans), and one C. parapsilosis. There were no significant differences between the SBI group and non-SBI group. Significant risk factors for SBI were extracorporeal membrane oxygenation, central venous catheter, indwelling urethral catheter, and nasogastric tube. CONCLUSIONS: Our findings confirmed that the incidence of secondary infection, particularly SBI, and mortality are high among critically ill patients with COVID-19. We showed that long-term hospitalization and invasive procedures such as tracheotomy, central venous catheter, indwelling urethral catheter, and nasogastric tube are risk factors for SBI and other complications.


Subject(s)
COVID-19 , Coinfection , Sepsis , Adult , Critical Illness , Humans , Intensive Care Units , SARS-CoV-2
4.
Front Med ; 15(3): 486-494, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1122810

ABSTRACT

Tocilizumab has been reported to attenuate the "cytokine storm" in COVID-19 patients. We attempted to verify the effectiveness and safety of tocilizumab therapy in COVID-19 and identify patients most likely to benefit from this treatment. We conducted a randomized, controlled, open-label multicenter trial among COVID-19 patients. The patients were randomly assigned in a 1:1 ratio to receive either tocilizumab in addition to standard care or standard care alone. The cure rate, changes of oxygen saturation and interference, and inflammation biomarkers were observed. Thirty-three patients were randomized to the tocilizumab group, and 32 patients to the control group. The cure rate in the tocilizumab group was higher than that in the control group, but the difference was not statistically significant (94.12% vs. 87.10%, rate difference 95% CI-7.19%-21.23%, P = 0.4133). The improvement in hypoxia for the tocilizumab group was higher from day 4 onward and statistically significant from day 12 (P = 0.0359). In moderate disease patients with bilateral pulmonary lesions, the hypoxia ameliorated earlier after tocilizumab treatment, and less patients (1/12, 8.33%) needed an increase of inhaled oxygen concentration compared with the controls (4/6, 66.67%; rate difference 95% CI-99.17% to-17.50%, P = 0.0217). No severe adverse events occurred. More mild temporary adverse events were recorded in tocilizumab recipients (20/34, 58.82%) than the controls (4/31, 12.90%). Tocilizumab can improve hypoxia without unacceptable side effect profile and significant influences on the time virus load becomes negative. For patients with bilateral pulmonary lesions and elevated IL-6 levels, tocilizumab could be recommended to improve outcome.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized , Humans , SARS-CoV-2 , Treatment Outcome
5.
J Autoimmun ; 118: 102596, 2021 03.
Article in English | MEDLINE | ID: covidwho-1062442

ABSTRACT

Forty-seven samples of peripheral blood mononuclear cells from four groups of coronavirus disease (COVID)-19 patients (mild, severe, convalescent, retesting-positive) and healthy controls were applied to profile the immune repertoire of COVID-19 patients in acute infection or convalescence by transcriptome sequencing and immune-receptor repertoire (IRR) sequencing. Transcriptome analyses showed that genes within principal component group 1 (PC1) were associated with infection and disease severity whereas genes within PC2 were associated with recovery from COVID-19. A "dual-injury mechanism" of COVID-19 severity was related to an increased number of proinflammatory pathways and activated hypercoagulable pathways. A machine-learning model based on the genes associated with inflammatory and hypercoagulable pathways had the potential to be employed to monitor COVID-19 severity. Signature analyses of B-cell receptors (BCRs) and T-cell receptors (TCRs) revealed the dominant selection of longer V-J pairs (e.g., IGHV3-9-IGHJ6 and IGHV3-23-IGHJ6) and continuous tyrosine motifs in BCRs and lower diversity of TCRs. These findings provide potential predictors for COVID-19 outcomes, and new potential targets for COVID-19 treatment.


Subject(s)
COVID-19/genetics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Adult , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , COVID-19 Drug Treatment
8.
Sci Total Environ ; 738: 139714, 2020 Oct 10.
Article in English | MEDLINE | ID: covidwho-459008

ABSTRACT

Various nanostructured surfaces have been developed recently to physically inactivate bacteria, for reducing the rapidly spreading threat of pathogenic bacteria. However, it generally takes several hours for these surfaces to inactivate most of the bacteria, which greatly limits their application in the fields favoring rapid bactericidal performance. Besides, the accumulated bacteria debris left on these surfaces is rarely discussed in the previous reports. Herein we report the nanotip-engineered ZnO nanoarrays (NAs) with ultrafast physical bactericidal rate and the ability to photocatalytically remove the bacteria debris. Neither chemical (Zn2+ or reactive oxygen species) nor photocatalytic effect leads to the ultrafast bactericidal rate, where 97.5% of E. coli and 94.9% of S. aureus are inactivated within only 1 min. The simulation analysis further supported our proposed mechanism attributing the ultrafast bactericidal activity to the great stress enabled by the uneven topography. Moreover, the re-exposure of the ZnO NAs nanotips can be achieved in only 10 min under a mild UV light source. This study not only presents an ultrafast physical bactericidal activity, but also demonstrates the potential of the recyclable and photocatalytic self-cleaning functions of theses surfaces for applications that desire rapid and sustainable bactericidal performance.


Subject(s)
Staphylococcus aureus , Zinc Oxide , Anti-Bacterial Agents , Bacteria , Catalysis , Escherichia coli
9.
Proc Natl Acad Sci U S A ; 117(20): 10970-10975, 2020 05 19.
Article in English | MEDLINE | ID: covidwho-155000

ABSTRACT

After analyzing the immune characteristics of patients with severe coronavirus disease 2019 (COVID-19), we have identified that pathogenic T cells and inflammatory monocytes with large amount of interleukin 6 secreting may incite the inflammatory storm, which may potentially be curbed through monoclonal antibody that targets the IL-6 pathways. Here, we aimed to assess the efficacy of tocilizumab in severe patients with COVID-19 and seek a therapeutic strategy. The patients diagnosed as severe or critical COVID-19 in The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) and Anhui Fuyang Second People's Hospital were given tocilizumab in addition to routine therapy between 5 and 14 February 2020. The changes of clinical manifestations, computerized tomography (CT) scan image, and laboratory examinations were retrospectively analyzed. Fever returned to normal on the first day, and other symptoms improved remarkably within a few days. Within 5 d after tocilizumab, 15 of the 20 patients (75.0%) had lowered their oxygen intake, and 1 patient needed no oxygen therapy. CT scans manifested that the lung lesion opacity absorbed in 19 patients (90.5%). The percentage of lymphocytes in peripheral blood, which decreased in 85.0% of patients (17/20) before treatment (mean, 15.52 ± 8.89%), returned to normal in 52.6% of patients (10/19) on the fifth day after treatment. Abnormally elevated C-reactive protein decreased significantly in 84.2% of patients (16/19). No obvious adverse reactions were observed. All patients have been discharged on average 15.1 d after giving tocilizumab. Preliminary data show that tocilizumab, which improved the clinical outcome immediately in severe and critical COVID-19 patients, is an effective treatment to reduce mortality.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , COVID-19 , China , Coronavirus Infections/blood , Coronavirus Infections/physiopathology , Disease Progression , Female , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
10.
J Transl Med ; 18(1): 164, 2020 04 14.
Article in English | MEDLINE | ID: covidwho-52547

ABSTRACT

A severe pneumonia-associated respiratory syndrome caused by a new coronavirus was identified in December 2019 (COVID-19), spread rapidly and has become a world-wide public health challenge. About 25% of COVID-19 patients experienced severe complications including acute respiratory distress syndrome (ARDS), and even progressed into an intensive care unit (ICU) admission and died. The exploration for the mortality causes and advancing novel therapeutic development of severe COVID-19 is crucial at the moment. The biopsy samples analysis at autopsy suggested that increased alveolar exudate caused by aberrant host immune response and inflammatory cytokine storm probably impedes alveolar gas exchange and contributes to the high mortality of severe COVID-19 patients. Our research has identified that pathogenic T cells and inflammatory monocytes incite inflammatory storm with large amount of interleukin 6, therefore monoclonal antibody that targets the IL-6 pathways may potentially curb inflammatory storm. Moreover, Tocilizumab treatment that blocking IL-6 receptors showed inspiring clinical results including temperature returned to normal quickly and respiratory function improved. Therefore, we suggest that Tocilizumab is an effective treatment in severe patients of COVID-19 to calm the inflammatory storm and reduce mortality.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/immunology , Humans , Interleukin-6/antagonists & inhibitors , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Severity of Illness Index , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL